Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.532
Filter
1.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 26-36, 2024.
Article in Chinese | WPRIM | ID: wpr-1003763

ABSTRACT

ObjectiveTo study the effect of Qizhu Kang'ai prescription (QZAP) on the gluconeogenesis enzyme phosphoenolpyruvate carboxykinase 1 (PCK1) in the liver of mouse model of liver cancer induced by diethylnitrosamine (DEN) combined with carbon tetrachloride (CCl4) and Huh7 cells of human liver cancer, so as to explore the mechanism on regulating metabolic reprogramming and inhibiting cell proliferation of liver cancer cells. MethodDEN combined with CCl4 was used to construct a mouse model of liver cancer via intraperitoneal injection. A normal group, a model group, and a QZAP group were set up, in which QZAP (3.51 g·kg-1) or an equal volume of normal saline was administered daily by gavage, respectively. Serum and liver samples were collected after eight weeks of intervention. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (γ-GT), and alpha-fetoprotein (AFP) in mice were detected to evaluate liver function changes of mice in each group. Hematoxylin-eosin (HE) staining and Sirius red staining were used to observe pathological changes in liver tissue. In the cell experiment, Huh7 cells were divided into blank group, QZAP low, medium, and high dose groups and/or PCK1 inhibitor (SKF-34288 hydrochloride) group, and Sorafenib group. The corresponding drug-containing serum and drug treatment were given, respectively. Cell counting kit-8 (CCK-8) method, colony formation experiment, Edu fluorescent labeling detection, intracellular adenosine triphosphate (ATP) content detection, and cell cycle flow cytometry detection were used to evaluate the proliferation ability, energy metabolism changes, and change in the cell cycle of Huh7 cells in each group. Western blot was used to detect the protein expression levels of PCK1, serine/threonine kinase (Akt), phosphorylated Akt (p-Akt), and cell cycle-dependent protein kinase inhibitor 1A (p21). ResultCompared with the model group, the pathological changes such as cell atypia, necrosis, and collagen fiber deposition in liver cancer tissue of mice in the QZAP group were alleviated, and the number of liver tumors was reduced (P<0.01). The serum ALT, AST, γ-GT, and AFP levels were reduced (P<0.01). At the cell level, compared with the blank group, low, medium, and high-dose groups of QZAP-containing serum and the Sorafenib group could significantly reduce the survival rate of Huh7 cells (P<0.01) and the number of positive cells with Edu labeling (P<0.01) and inhibit clonal proliferation ability (P<0.01). The QZAP groups could also reduce the intracellular ATP content (P<0.05) and increase the distribution ratio of the G0/G1 phase of the cell cycle (P<0.05) in a dose-dependent manner. Compared with the model group and blank group, PCK1 and p21 protein levels of mouse liver cancer tissue and Huh7 cells in the QZAP groups were significantly reduced (P<0.05,P<0.01), and the p-Akt protein level was significantly increased (P<0.01). Compared with the blank group, the ATP content and cell survival rate of Huh7 cells in the SKF-34288 hydrochloride group were significantly increased (P<0.05), but there was no statistical difference in the ratio of Edu-positive cells and the proportion of G0/G1 phase distribution. Compared with the SKF-34288 hydrochloride group, the QZAP combined with the SKF-34288 hydrochloride group significantly reduced the ATP content, cell survival rate, and Edu-positive cell ratio of Huh7 cells (P<0.05) and significantly increased the G0/G1 phase distribution proportion (P<0.05). ConclusionQZAP may induce the metabolic reprogramming of liver cancer cells by activating PCK1 to promote Akt/p21-mediated tumor suppression, thereby exerting an anti-hepatocellular carcinoma proliferation mechanism.

2.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1550814

ABSTRACT

Después de las enfermedades cardiovasculares, el cáncer, una patología no transmisible, ha sido considerado como la segunda causa de muertes cada año a nivel global y como la barrera más importante para aumentar la esperanza de vida en el siglo 21. Se han alcanzado avances de gran relevancia en su prevención y tratamiento; sin embargo, existe aún un largo camino por recorrer para alcanzar un tratamiento efectivo para cada tipo de cáncer. En este trabajo se describen enfoques de reposicionamiento y síntesis de moléculas híbridas con potencial actividad antineoplásica. Para obtener el al-dehído intermediario clave, se empleó la metodología de oxidación de Dess-Martin, que fue acoplado con las cetonas correspondientes usando LDA; se generó así una mezcla racémica para cada uno de los compuestos híbridos propuestos. La actividad antiproliferativa in vitro de los compuestos finales se evaluó frente a ocho líneas celulares derivadas de tumores sólidos humanos, y cuatro líneas celulares no cancerosas. El compuesto 11d resulto ser el más efectivo y con mayor índice de seguridad. Los resultados sugirieron que estos compuestos podrían bloquear el ciclo celular e inducir la apop-tosis y la muerte en las células CCRF-CEM de forma dependiente de la dosis in vitro.


After cardiovascular diseases, cancer, a non-communicable pathology, has been considered the second cause of death each year globally and as the most important barrier to increasing life expectancy in the 21st century. Advances of great relevance have been made in its prevention and treatment, however, there is still a long way to go to achieve an effective treatment for each type of cancer. This paper describes approaches to reposition and synthesis of hybrid molecules with potential antineoplastic activity. To obtain the key intermediate aldehyde, the Dess-Martin oxidation methodology was used, which was coupled with the corresponding ketones using LDA. The final hybrid compounds were obtained as a racemic mixture. The in vitro antiproli-ferative activity of the final compounds was evaluated against eight cell lines derived from human solid tumors, and four non-cancerous cell lines. The compound 11d turned out to be the most effective and with the highest safety index. The results suggested that these compounds could block the cell cycle and induce apoptosis and death in CCRF-CEM cells in a dose-dependent manner in vitro.


Depois das doenças cardiovasculares, o câncer, uma patologia não transmissível, tem sido considerado como a segunda causa de mortes a cada ano em todo o mundo e como a barreira mais importante para o aumento da expectativa de vida no século 21. Avanços de grande relevância têm sido feitos na sua prevenção e tratamento, no entanto, ainda há um longo caminho a percorrer para alcançar um tratamento eficaz para cada tipo de câncer. Este artigo descreve abordagens para o reposicionamento e síntese de moléculas híbridas com potencial atividade antineoplásica. Para a obtenção do aldeído intermediário chave, foi utilizada a metodologia de oxidação de Dess-Martin, que foi acoplada com as cetonas correspondentes usando LDA. Os compostos híbridos finais foram obtidos como uma mistura racêmica. A atividade antiproliferativa in vitro dos compostos finais foi avaliada contra oito linhagens celulares derivadas de tumores sólidos humanos e quatro linhagens celulares não cancerosas. O composto 11d revelou-se o mais eficaz e com o maior índice de segurança. Os resultados sugeriram que estes compostos poderiam bloquear o ciclo celular e induzir apoptose e morte em células CCRF-CEM de forma dose-de-pendente in vitro.

3.
International Journal of Surgery ; (12): 396-400,F2, 2023.
Article in Chinese | WPRIM | ID: wpr-989470

ABSTRACT

Objective:To explore the effect of miR-1249-5p on the proliferation, metastasis and cell cycle of PC-3 cell in prostate cancer.Methods:The relationship between the expression level of miR-1249-5p and the overall survival of prostate cancer patients was analyzed using OncoMir Cancer Database (OMCD). The human prostate cancer cell line PC-3 was divided into two groups: miR-1249-5p group and negative control group. Mediated by Lipofectamine 2000, miR-1249-5p mimics liposome complex or negative miRNA liposome complex were transfected into PC-3 cell at logarithmic growth stage. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of miR-1249-5p in PC-3 cell of two groups. Colony formation assay was used to detect the changes of the proliferation ability of PC-3 cell in the two groups. Transwell experiment was used to detect the changes of PC-3 cell invasion in the two groups, and the cell cycle changes of the two groups of PC-3 were detected by flow cytometry. The miRNA prediction software miRGator was used to predict the target gene of miR-1249-5p. RT-qPCR and Western blotting were used to detect the target gene expression of miR-1249-5p. Measurement data were expressed as mean±standard deviation ( ± s), and t-test was used for comparison between two groups. Results:Compared with prostate cancer patients with low miR-1249-5p expression, prostate cancer patients with higher miR-1249-5p expression had longer overall survival, and the difference was statistically significant ( P<0.01). The expression level of miR-1249-5p in the miR-1249-5p group (10.74±1.19) was significantly higher than that of the negative control group (1.56±0.27), the difference was statistically significant ( P<0.01). The number of colonies formed in the miR-1249-5p group (35.86±6.94) was significantly less than that in the negative control group (88.94±11.66), and the difference was statistically significant ( P<0.01). The number of transmembrane cells [(25.01±6.83)/high power field of view] in the miR-1249-5p group was significantly less than that of the negative control group [(82.76±8.35)/high power field of view], and the difference was statistically significant ( P<0.01). The proportion of cells in the G 0-G 1 phase in the miR-1249-5p group [(50.79±6.61)%] was significantly higher than that in the negative control group [(27.09±2.30)%], the difference was statistically significant ( P<0.01), and PC-3 cell were inhibited in the G 0-G 1 phase. Neural precursor cell expressed developmentally down-regulated 9 ( NEDD9) may be the target gene of miR-1249-5p. Compared with the negative control group, the NEDD9 gene expression in the miR-1249-5p group was significantly lower than that of the negative control group, the difference was statistically significant ( P<0.01). Conclusion:miR-1249-5p can inhibit the proliferation, metastasis and cell cycle of PC-3 cell in prostate cancer, which may be achieved by negatively regulating the expression of proto-oncogene NEDD9.

4.
Journal of Southern Medical University ; (12): 710-717, 2023.
Article in Chinese | WPRIM | ID: wpr-986980

ABSTRACT

OBJECTIVE@#To screen for small molecular compounds with selective inhibitory activity against cutaneous melanoma cells with BAP1 deletion.@*METHODS@#Cutaneous melanoma cells expressing wild-type BAP1 were selected to construct a BAP1 knockout cell model using CRISPR-Cas9 system, and small molecules with selective inhibitory activity against BAP1 knockout cells were screened from a compound library using MTT assay. Rescue experiment was carried out to determine whether the sensitivity of BAP1 knockout cells to the candidate compounds was directly related to BAP1 deletion. The effects of the candidate compounds on cell cycle and apoptosis were detected with flow cytometry, and the protein expressions in the cells were analyzed with Western blotting.@*RESULTS@#The p53 activator RITA from the compound library was shown to selectively inhibit the viability of BAP1 knockout cells. Overexpression of wild-type BAP1 reversed the sensitivity of BAP1 knockout cells to RITA, while overexpression of the mutant BAP1 (C91S) with inactivated ubiquitinase did not produce any rescue effect. Compared with the control cells expressing wild-type BAP1, BAP1 knockout cells were more sensitive to RITA-induced cell cycle arrest and apoptosis (P < 0.0001) and showed an increased expression of p53 protein, which was further increased by RITA treatment (P < 0.0001).@*CONCLUSION@#Loss of BAP1 results in the sensitivity of cutaneous melanoma cells to p53 activator RITA. In melanoma cells, the activity of ubiquitinase in BAP1 is directly related to their sensitivity to RITA. An increased expression of p53 protein induced by BAP1 knockout is probably a key reason for RITA sensitivity of melanoma cells, suggesting the potential of RITA as a targeted therapeutic agent for cutaneous melanoma carrying BAP1-inactivating mutations.


Subject(s)
Humans , Melanoma , Skin Neoplasms , Tumor Suppressor Protein p53 , Apoptosis , Cell Division , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
5.
Journal of Southern Medical University ; (12): 544-551, 2023.
Article in Chinese | WPRIM | ID: wpr-986960

ABSTRACT

OBJECTIVE@#To analyze the expression of hydroxysteroid dehydrogenase like 2 (HSDL2) in rectal cancer tissues and the effect of changes in HSDL2 expression level on proliferation of rectal cancer cells.@*METHODS@#Clinical data and tissue samples of 90 patients with rectal cancer admitted to our hospital from January 2020 to June 2022 were collected from the prospective clinical database and biological specimen database. The expression level of HSDL2 in rectal cancer and adjacent tissues was detected by immunohistochemistry, and based on the median level of HSDL2 expression, the patients were divided into high expression group (n=45) and low expression group (n=45) for analysis the correlation between HSDL2 expression level and the clinicopathological parameters. GO and KEGG enrichment analyses were performed to explore the role of HSDL2 in rectal cancer progression. The effects of changes in HSDL2 expression levels on rectal cancer cell proliferation, cell cycle and protein expressions were investigated in SW480 cells with lentivirus-mediated HSDL2 silencing or HSDL2 overexpression using CCK-8 assay, flow cytometry and Western blotting.@*RESULTS@#The expressions of HSDL2 and Ki67 were significantly higher in rectal cancer tissues than in the adjacent tissues (P < 0.05). Spearman correlation analysis showed that the expression of HSDL2 protein was positively correlated with Ki67, CEA and CA19-9 expressions (P < 0.01). The rectal cancer patients with high HSDL2 expressions had significantly higher likelihood of having CEA ≥5 μg/L, CA19-9 ≥37 kU/L, T3-4 stage, and N2-3 stage than those with a low HSDL2 expression (P < 0.05). GO and KEGG analysis showed that HSDL2 was mainly enriched in DNA replication and cell cycle. In SW480 cells, HSDL2 overexpression significantly promoted cell proliferation, increased cell percentage in S phase, and enhanced the expression levels of CDK6 and cyclinD1 (P < 0.05), and HSDL2 silencing produced the opposite effects (P < 0.05).@*CONCLUSION@#The high expression of HSDL2 in rectal cancer participates in malignant progression of the tumor by promoting the proliferation and cell cycle progress of the cancer cells.


Subject(s)
Humans , CA-19-9 Antigen , Ki-67 Antigen/metabolism , Prospective Studies , Cell Line, Tumor , Cell Proliferation/genetics , Rectal Neoplasms/genetics , Cell Cycle , Gene Expression Regulation, Neoplastic , Hydroxysteroid Dehydrogenases/metabolism
6.
Cancer Research on Prevention and Treatment ; (12): 243-248, 2023.
Article in Chinese | WPRIM | ID: wpr-986708

ABSTRACT

Objective To investigate the effect of MDM2 inhibitor RG-7388 on the proliferation, cell cycle, and apoptosis of diffuse large B-lymphoma (DLBCL) cells. Methods DLBCL cell strains SUDHL2 and HBL1 were treated with 2, 4, and 8 μmol/LRG7388, respectively. Cell proliferation was detected by CCK8 and EdU methods. Apoptosis was measured by Annexin V–FITC/PI double staining and Caspase 3/7-Glo enzyme activity methods. Cell cycle was assessed by flow cytometry. Changes in the expression of cell cycle and apoptosis-related proteins were determined by Western blot. Results The IC50 of RG7388 for inhibiting SUDHL2 and HBL1 cells were 3.36 and 3.76 μmol/L, respectively, and the inhibitory effect of RG7388 was dose dependent. The proportions of G1 phase and apoptotic cells in the SUDHL2 and HBL1 cells treated with different doses of RG7388 were significantly higher than those in the control group (all P<0.05). The activity of Caspase 3/7 increased gradually with RG7388 concentration, compared with that in the control group. The expression levels of p53, p27, p21, and PARP increased, whereas the expression of Mcl-1 and Bcl-xL was down-regulated (all P<0.05). Conclusion MDM2 inhibitor RG-7388 inhibits the proliferation of DLBCL cells, triggers cell cycle arrest in the G1 phase, and induces apoptosis through the p53 pathway.

7.
International Eye Science ; (12): 193-197, 2023.
Article in Chinese | WPRIM | ID: wpr-960934

ABSTRACT

AIM: To elucidate the effect of histone deacetylase(HDAC)inhibitor suberoylanilide hydroxamic acid(SAHA)on the proliferation of choroidal melanoma(CM)cell line C918 and to explore the related mechanism.METHODS: Inverted fluorescence microscope was used to observe the effect of different concentrations of SAHA(0.625, 1.25 or 2.5 μmol/L)on the morphology of C918 cell. The cell viability was detected by cholecystokinin octapeptide(CCK-8)assay. Plate clone formation assay and EdU staining were carried out to measure the effect of SAHA on the cell proliferation. Meanwhile, the expressions of cell proliferation-related proteins including c-Myc, CyclinA2 and CDK2, and histone deacetylase 7(HDAC7)and fibroblast growth factor 18(FGF18)were detected by Western blot.RESULTS: Compared with the control group, the cell density was reduced in SAHA. SAHA could also promote cell shrinkage, and the inhibition on cell was in a concentration-dependent manner. CCK-8 assay showed that SAHA treatment decreased cell viability in a dose-dependent manner and the inhibition rate was 80% when SAHA at 2.5 μmol/L. Compared with the control group, Western blot showed that SAHA could suppress the expression of cell proliferation proteins including c-Myc, CyclinA2 and CDK2 in a dose-dependent manner. In addition, 1.25 μmol/L SAHA significantly decreased the numbers of EdU staining positive cells and cell clones. More importantly, SAHA could dose-dependently decrease the expression of HDAC7 and FGF18 compared with control group.CONCLUSION: SAHA could inhibit the proliferation of CM cell line C918 by inhibiting the HDAC7/FGF18 signaling pathway.

8.
Chinese Journal of Biotechnology ; (12): 1525-1547, 2023.
Article in Chinese | WPRIM | ID: wpr-981152

ABSTRACT

Cell cycle plays a crucial role in cell development. Cell cycle progression is mainly regulated by cyclin dependent kinase (CDK), cyclin and endogenous CDK inhibitor (CKI). Among these, CDK is the main cell cycle regulator, binding to cyclin to form the cyclin-CDK complex, which phosphorylates hundreds of substrates and regulates interphase and mitotic progression. Abnormal activity of various cell cycle proteins can cause uncontrolled proliferation of cancer cells, which leads to cancer development. Therefore, understanding the changes in CDK activity, cyclin-CDK assembly and the role of CDK inhibitors will help to understand the underlying regulatory processes in cell cycle progression, as well as provide a basis for the treatment of cancer and disease and the development of CDK inhibitor-based therapeutic agents. This review focuses on the key events of CDK activation or inactivation, and summarizes the regulatory processes of cyclin-CDK at specific times and locations, as well as the progress of research on relevant CDK inhibitor therapeutics in cancer and disease. The review concludes with a brief description of the current challenges of the cell cycle process, with the aim to provide scientific references and new ideas for further research on cell cycle process.


Subject(s)
Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Protein Serine-Threonine Kinases , Cell Cycle Proteins/metabolism , Cell Cycle/physiology , Cyclin-Dependent Kinase 2
9.
Journal of Zhejiang University. Science. B ; (12): 442-454, 2023.
Article in English | WPRIM | ID: wpr-982384

ABSTRACT

CUDC-101, an effective and multi-target inhibitor of epidermal growth factor receptor (EGFR), histone deacetylase (HDAC), and human epidermal growth factor receptor 2 (HER2), has been reported to inhibit many kinds of cancers, such as acute promyelocytic leukemia and non-Hodgkin's lymphoma. However, no studies have yet investigated whether CUDC-101 is effective against myeloma. Herein, we proved that CUDC-101 effectively inhibits the proliferation of multiple myeloma (MM) cell lines and induces cell apoptosis in a time- and dose-dependent manner. Moreover, CUDC-101 markedly blocked the signaling pathway of EGFR/phosphoinositide-3-kinase (PI3K) and HDAC, and regulated the cell cycle G2/M arrest. Moreover, we revealed through in vivo experiment that CUDC-101 is a potent anti-myeloma drug. Bortezomib is one of the important drugs in MM treatment, and we investigated whether CUDC-101 has a synergistic or additive effect with bortezomib. The results showed that this drug combination had a synergistic anti-myeloma effect by inducing G2/M phase blockade. Collectively, our findings revealed that CUDC-101 could act on its own or in conjunction with bortezomib, which provides insights into exploring new strategies for MM treatment.


Subject(s)
Humans , Antineoplastic Agents/therapeutic use , Apoptosis , Bortezomib/pharmacology , Cell Line, Tumor , Cell Proliferation , ErbB Receptors/antagonists & inhibitors , G2 Phase Cell Cycle Checkpoints , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylases/metabolism , M Cells , Multiple Myeloma/drug therapy
10.
Journal of Experimental Hematology ; (6): 801-809, 2023.
Article in Chinese | WPRIM | ID: wpr-982133

ABSTRACT

OBJECTIVE@#To investigate the biological function of miR-203a-5p and the underlying mechanism in multiple myeloma (MM).@*METHODS@#Three miRNA expression profiles (GSE16558, GSE24371 and GSE17498) were downloaded from the GEO database. The three miRNA expression profiles contained 131 MM samples and 17 normal plasmacyte samples. The robust rank aggregation (RRA) method was used to identify the differentially expressed miRNAs between MM and normal plasmacytes. In order to carry out cytological experiments, MM cell line with stable over-expression of miR-203a-5p was constructed with lentivirus. Expression levels of miR-203a-5p in MM cells were quantified by qRT-PCR. The effects of miR-203a-5p on MM cells were investigated using assays of cell viability and cell cycle. Cell proliferation was measured using the Cell Counting kit (CCK)8 assay. The percentage of cells in each cell cycle was measured with a FACSCalibur system. Xenograft tumor models were established to evaluate the role of miR-203a-5p in tumorigenesis in vivo . To elucidate the underlying molecular mechanisms of miR-203a-5p in mediating cell proliferation inhibition and cell cycle arrest in MM, we used TargetScan and miRanda to predict the candidate targets of miR-203a-5p. The potential target of miR-203a-5p in MM cells was explored using the luciferase reporter assay, qRT-PCR, and Western blot.@*RESULTS@#An integrated analysis of three MM miRNA expression datasets showed that the levels of miR-203a-5p in MM were notably downregulated compared with those in normal plasmacytes. Accordingly, the relative expression levels of miR-203a-5p were decreased in MM cell lines. In addition, overexpression of miR-203a-5p inhibited the proliferation and cell cycle progression of RPMI8226 and U266 cells. In vivo experiments demonstrated that upregulation of miR-203a-5p expression could significantly inhibit the tumorigenesis of subcutaneous myeloma xenografts in nude mice. Mechanistic investigation led to the identification of Jagged 1 (JAG1) as a novel and direct downstream target of miR-203a-5p. Interestingly, the reintroduction of JAG1 abrogated miR-203a-5p-induced MM cell growth inhibition and cell cycle arrest.@*CONCLUSION@#Our data demonstrate that miR-203a-5p inhibits cell proliferation and cell cycle progression in MM cells by targeting JAG1, supporting the utility of miR-203a-5p as a novel and potential therapeutic agent for miRNA-based MM therapy.


Subject(s)
Animals , Mice , Humans , Multiple Myeloma/pathology , Cell Line, Tumor , Mice, Nude , MicroRNAs/metabolism , Cell Division , Cell Proliferation , Disease Models, Animal , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Jagged-1 Protein/metabolism
11.
Journal of Experimental Hematology ; (6): 699-706, 2023.
Article in Chinese | WPRIM | ID: wpr-982119

ABSTRACT

OBJECTIVE@#To investigate the mechanism of nucleolin (NCL) involved in lymphoma proliferation by regulating thymidine kinase 1 (TK1).@*METHODS@#Twenty-three patients with diffuse large B-cell lymphoma (DLBCL) were selected and divided into initial treatment group (14 cases) and relapsed/refractory group (9 cases). Serum TK1 and C23 protein in peripheral blood mononuclear cells were detected. Cell models of CA46-NCL-KD (CA46-NCL-knockdown) and CA46-NCL-KNC (CA46-NCL-knockdown negative control) were established by lentivirus vector mediated transfection in Burkitt lymphoma cell line CA46. The half maximal inhibitory concentration (IC50) of CA46-NCL-KD, CA46-NCL-KNC, and CA46 to adriamycin were detected by cell proliferation assay (MTS). The expression of NCL mRNA and protein in CA46-NCL-KD and CA46-NCL-KNC cells were dectected by Q-PCR and Western blot, respectively. The cell cycle of CA46-NCL-KD, CA46-NCL-KNC, and CA46 cells were detected by flow cytometry. The expression of TK1 protein in CA46-NCL-KD and CA46-NCL-KNC cells was detected by an enhanced chemiluminescence (ECL) dot blot assay.@*RESULTS@#The level of serum TK1 in the initial treatment group was 0.43(0-30-1.01) pmol/L, which was lower than 10.56(2.19-14.99) pmol/L in the relapsed/refractory group (P<0-01), and the relative expression level of NCL protein in peripheral blood was also significantly lower. The IC50 of CA46-C23-KD cells to adriamycin was (0.147±0.02) μg/ml, which was significantly lower than (0.301±0.04) μg/ml of CA46-C23-KNC cells and (0.338±0.05) μg/ml of CA46 cells (P<0.05). Compared with CA46-NCL-KNC cells, the expression of NCL mRNA and protein, TK1 protein decreased in CA46-NCL-KD cells, and the proportion of S phase and G2/M phase also decreased, while G0/G1 phase increased in cell cycle.@*CONCLUSION@#The increased expression of NCL in DLBCL and CA46 cells indicates low sensitivity to drug. NCL may participate in regulation of lymphoma proliferation by affecting TK1 expression, thereby affecting the drug sensitivity.


Subject(s)
Humans , Leukocytes, Mononuclear/metabolism , Apoptosis , Cell Line, Tumor , Lymphoma , Thymidine Kinase/pharmacology , Doxorubicin/pharmacology , Cell Division , RNA, Messenger/genetics
12.
Journal of Experimental Hematology ; (6): 358-363, 2023.
Article in Chinese | WPRIM | ID: wpr-982067

ABSTRACT

OBJECTIVE@#To investigate the effect of scutellarin (SCU) on proliferation, cell cycle and apoptosis of acute myeloid leukemia (AML) cells and its related molecular mechanism.@*METHODS@#Human AML HL-60 cells were cultured in vitro. The cells were treated with SCU at the concentration of 0, 2, 4, 8, 16, 32, 64 μmol/L, and the inhibition rate of cell proliferation was detected by CCK-8 method. Then HL-60 cells were treated with SCU at the concentration of 4, 8, 16 μmol/L, and the negative control group (NC group) was set. The cell cycle distribution and apoptosis were detected by flow cytometry, and the expression of cell cycle, apoptosis and JAK2/STAT3 pathway related proteins were detected by Western blot.@*RESULTS@#SCU significantly inhibited the proliferation of HL-60 cells in a concentration- and time-dependent manner(r =0.958,r =0.971). Compared with NC group, the proportion of cells in G0/G1 phase and apoptosis rate of HL-60 cells in 4, 8, 16 μmol/L SCU group were significantly increased, and the proportion of cells in S phase was significantly decreased (P <0.05). The relative protein expression levels of p21, p53, caspase-3 and Bax were significantly increased, while the relative protein expression levels of CDK2, cyclin E and Bcl-2 were significantly decreased (P <0.05). The ratio of p-JAK2/JAK2 and p-STAT3/STAT3 were significantly decreased (P <0.05). The changes of above-mentioned indexes were concentration dependent.@*CONCLUSION@#SCU can inhibit the proliferation of AML cells, induce cell cycle arrest and apoptosis, and its mechanism may be related to the regulation of JAK2/STAT3 signaling pathway.


Subject(s)
Humans , Apoptosis , Signal Transduction , Leukemia, Myeloid, Acute , HL-60 Cells , Cell Proliferation , Cell Line, Tumor
13.
Journal of Experimental Hematology ; (6): 76-80, 2023.
Article in Chinese | WPRIM | ID: wpr-971105

ABSTRACT

OBJECTIVE@#To investigate the effects of miR-144-3p on cell proliferation, cell cycle and apoptosis of blast phase chronic myelogenous leukemia (CML) K562 cells.@*METHODS@#K562 cells were cultured in vitro and mimics negative control, hsa-miR-144-3p mimics, inhibitor negative control and miR-144-3p inhibitor were respectively transfected into K562 cells with transfection reagents. The cells were divided into five groups including blank control, mimics negative control, miR-144-3p mimics, inhibitor negative control and miR-144-3p inhibitor. After transfection, the cell proliferation activity was detected by CCK-8 assay. The cell cycle distribution and apoptosis were detected by flow cytometry.@*RESULTS@#Compared with the blank control and mimics negative control groups, the proliferation rate of miR-144-3p mimics group was significantly decreased (P<0.05), the proportion of S phase cells was markedly increased (P<0.05), while the proportion of G1 phase cells was obviously decreased (P<0.05), and the apoptosis rate was significantly increased (P<0.05). Compared with the blank control and inhibitor negative control groups, the proliferation rate of miR-144-3p inhibitor group was obviously increased (P<0.05), the proportion of S phase cells was markedly decreased (P<0.05), while the proportion of G1 phase cells was obviously increased (P<0.05), and the apoptosis rate was significantly decreased (P<0.05).@*CONCLUSION@#miR-144-3p can inhibit the proliferation and promote apoptosis of K562 cells, affect the cell cycle, and block K562 cells in S phase, which indicates that miR-144-3p is involved in the cell cycle activity of CML during blastic phase.


Subject(s)
Humans , Apoptosis/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/genetics , K562 Cells , MicroRNAs/metabolism
14.
Asian Journal of Andrology ; (6): 198-207, 2023.
Article in English | WPRIM | ID: wpr-971013

ABSTRACT

Mitogen-activated protein kinase-8-interacting protein 2 (MAPK8IP2) is a scaffold protein that modulates MAPK signal cascades. Although MAPK pathways were heavily implicated in prostate cancer progression, the regulation of MAPK8IP2 expression in prostate cancer is not yet reported. We assessed MAPK8IP2 gene expression in prostate cancer related to disease progression and patient survival outcomes. MAPK8IP2 expression was analyzed using multiple genome-wide gene expression datasets derived from The Cancer Genome Atlas (TCGA) RNA-sequence project and complementary DNA (cDNA) microarrays. Multivariable Cox regressions and log-rank tests were used to analyze the overall survival outcome and progression-free interval. MAPK8IP2 protein expression was evaluated using the immunohistochemistry approach. The quantitative PCR and Western blot methods analyzed androgen-stimulated MAPK8IP2 expression in LNCaP cells. In primary prostate cancer tissues, MAPK8IP2 mRNA expression levels were significantly higher than those in the case-matched benign prostatic tissues. Increased MAPK8IP2 expression was strongly correlated with late tumor stages, lymph node invasion, residual tumors after surgery, higher Gleason scores, and preoperational serum prostate-specific antigen (PSA) levels. MAPK8IP2 upregulation was significantly associated with worse overall survival outcomes and progression-free intervals. In castration-resistant prostate cancers, MAPK8IP2 expression strongly correlated with androgen receptor (AR) signaling activity. In cell culture-based experiments, MAPK8IP2 expression was stimulated by androgens in AR-positive prostate cancer cells. However, MAPK8IP2 expression was blocked by AR antagonists only in androgen-sensitive LNCaP but not castration-resistant C4-2B and 22RV1 cells. These results indicate that MAPK8IP2 is a robust prognostic factor and therapeutic biomarker for prostate cancer. The potential role of MAPK8IP2 in the castration-resistant progression is under further investigation.


Subject(s)
Male , Humans , Androgens/therapeutic use , Receptors, Androgen/genetics , Prognosis , Mitogen-Activated Protein Kinase 8/therapeutic use , Cell Line, Tumor , Prostatic Neoplasms/pathology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Gene Expression Regulation, Neoplastic
15.
Biol. Res ; 56: 1-1, 2023. ilus, tab
Article in English | LILACS | ID: biblio-1420299

ABSTRACT

Cell cycle is one of the main cellular mechanisms involved in tumor progression. Almost all of the active molecular pathways in tumor cells directly or indirectly target the cell cycle progression. Therefore, it is necessary to assess the molecular mechanisms involved in cell cycle regulation in tumor cells. Since, early diagnosis has pivotal role in better cancer management and treatment, it is required to introduce the non-invasive diagnostic markers. Long non-coding RNAs (LncRNAs) have higher stability in body fluids in comparison with mRNAs. Therefore, they can be used as efficient non-invasive markers for the early detection of breast cancer (BCa). In the present review we have summarized all of the reported lncRNAs involved in cell cycle regulation in BCa. It has been reported that lncRNAs mainly affect the cell cycle in G1/S transition through the CCND1/CDK4-6 complex. Present review paves the way of introducing the cell cycle related lncRNAs as efficient markers for the early detection of BCa.


Subject(s)
Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Cycle/genetics , Cell Division , Cell Cycle Checkpoints
16.
São Paulo; s.n; s.n; 2023. 81 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1437408

ABSTRACT

Com base nas perturbações fosfoproteômicas de moléculas associadas ao ciclo celular em células infectadas pelo coronavírus causador da síndrome respiratória aguda grave (SARSCoV)-2, a hipótese de inibidores do ciclo celular como uma terapia potencial para a doença de coronavírus 2019 (COVID-19) foi proposta. No entanto, o cenário das alterações do ciclo celular em COVID-19 permanece inexplorado. Aqui, realizamos uma análise integrativa de sistemas imunológicos de proteoma publicamente disponível (espectrometria de massa) e dados de transcriptoma (sequenciamento de RNA em massa e de célula única [scRNAseq]), com o objetivo de caracterizar mudanças globais na assinatura do ciclo celular de pacientes com COVID-19. Além de módulos de co-expressão de genes significativos enriquecidos associados ao ciclo celular, encontramos uma rede interconectada de proteínas diferencialmente expressas associadas ao ciclo celular (DEPs) e genes (DEGs) integrando dados moleculares de 1.480 indivíduos (974 pacientes infectados por SARS-CoV-2 e 506 controles [controles saudáveis ou indivíduos com outras doenças respiratórias]). Entre esses DEPs e DEGs estão várias ciclinas (CCNs), ciclo de divisão celular (CDCs), quinases dependentes de ciclinas (CDKs) e proteínas de manutenção de minicromossomos (MCMs). Embora os pacientes com COVID-19 compartilhem parcialmente o padrão de expressão de algumas moléculas associadas ao ciclo celular com outras doenças respiratórias, eles exibiram uma expressão significativamente maior de moléculas associadas ao ciclo celular relacionadas à gravidade da doença. Notavelmente, a assinatura do ciclo celular predominou nos leucócitos do sangue dos pacientes, mas não nas vias aéreas superiores. Os dados de scRNAseq de 229 indivíduos (159 pacientes com COVID- 19 e 70 controles) revelaram que as alterações das assinaturas do ciclo celular predominam nas células B, T e NK. Esses resultados fornecem uma compreensão global única das alterações nas moléculas associadas ao ciclo celular em pacientes com COVID-19, sugerindo novas vias putativas para intervenção terapêutica


Based on phosphoproteomics perturbations of cell cycle-associated molecules in severe acute respiratory syndrome coronavirus (SARS-CoV)-2-infected cells, the hypothesis of cell cycle inhibitors as a potential therapy for Coronavirus disease 2019 (COVID-19) has been proposed. However, the landscape of cell cycle alterations in COVID-19 remains mostly unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome (mass spectrometry) and transcriptome data (bulk and single-cell RNA sequencing [scRNAseq]), aiming to characterize global changes in the cell cycle signature of COVID-19 patients. Beyond significant enriched cell cycle-associated gene co-expression modules, we found an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating molecular data of 1,480 individuals (974 SARS-CoV- 2 infected patients and 506 controls [either healthy controls or individuals with other respiratory illness]). Among these DEPs and DEGs are several cyclins (CCNs), cell division cycle (CDCs), cyclin-dependent kinases (CDKs), and mini-chromosome maintenance proteins (MCMs). Although COVID-19 patients partially shared the expression pattern of some cell cycleassociated molecules with other respiratory illnesses, they exhibited a significantly higher expression of cell cycle-associated molecules associated with disease severity. Notably, the cell cycle signature predominated in the patients blood leukocytes but not in the upper airways. The scRNAseq data from 229 individuals (159 COVID-19 patients and 70 controls) revealed that the alterations of cell cycle signatures predominate in B, T, and NK cells. These results provide a unique global comprehension of the alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention


Subject(s)
Humans , Male , Female , Patients/classification , Cell Cycle/immunology , COVID-19/pathology , Respiratory Tract Diseases/pathology , Mass Spectrometry/methods , Killer Cells, Natural/classification , Chromosomes/metabolism , Sequence Analysis, RNA/instrumentation , Coronavirus/pathogenicity , Proteome/analysis , Transcriptome/immunology
17.
Braz. J. Pharm. Sci. (Online) ; 59: e22102, 2023. graf
Article in English | LILACS | ID: biblio-1439521

ABSTRACT

Abstract EphrinB2 plays a critical role in tumor growth. In this study, we studied the antitumor activity of imperatorin derivative IMP-1 in renal cell carcinoma (RCC) by regulating EphrinB2 pathway.. Results showed that IMP-1 inhibited the proliferation of 786-O cells in a dose- and time-dependent manner. More importantly, knockdown and transfection of EphrinB2 altered the inhibitory effect of IMP-1 on the activity of 786-O cells. IMP-1 arrested 786-O cell cycle at G0/G1 phase by decreasing the expression of cyclin D1 and cyclin E. Moreover, IMP-1 regulated Bcl-2 family proteins' expression, thus inducing apoptosis of 786-O cells. IMP-1 down-regulated the expression of EphrinB2, Syntenin1 and PICK1. Then, IMP-1 decreased the phosphorylation of Erk1/2 and AKT. In all, IMP-1 could regulate the EphrinB2 pathway in order to inhibit 786-O cell growth by arresting the cell cycle at G0/G1 phase and inducing cell apoptosis. Thus, IMP-1 may present as a potential strategy for RCC treatment.


Subject(s)
Carcinoma, Renal Cell/pathology , Neoplasms/classification , G1 Phase/genetics , Cyclin D1/adverse effects , Cyclin E/adverse effects
18.
Braz. j. med. biol. res ; 56: e12922, 2023. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1520463

ABSTRACT

Nuclear proliferation marker MIB-1 (Ki-67) immunohistochemistry (IHC) is used to examine tumor cell proliferation. However, the diagnostic or prognostic value of the Ki-67 nuclear staining intensity and location, defined as nuclear gradient (NG), has not been assessed. This study examined the potential association between Ki-67 NG and cell cycle phases and its effect on the prognosis of pulmonary typical carcinoid (PTC) tumors. We propose a method for classifying the NG of Ki-67 during the cell cycle and compare the results between PTC, pulmonary adenocarcinoma (PAD), and breast ductal carcinoma (BDC). A literature review and objective analysis of IHC-stained paraffin sections were used to determine the Ki-67 labeling index and composed a stratification of the NG into NG1, NG2, and NG3/4 categories. A semi-automated image analysis protocol was established to determine the Ki-67 NG in PTC, PAD, and BDC. High intraobserver consistency and moderate interobserver agreement were achieved in the determination of Ki-67 NG in tumor specimens. NG1 and NG2 were lower in PTC than in PAD and BDC. Cox multivariate analysis of PTC after adjusting for age and number of metastatic lymph nodes showed that Ki-67 NG1 and NG2 significantly predicted clinical outcomes. The semi-automated method for quantification of Ki-67 nuclear immunostaining proposed in this study could become a valuable diagnostic and prognostic tool in PTC.

19.
Braz. j. biol ; 83: 1-9, 2023. ilus, graf
Article in English | LILACS, VETINDEX | ID: biblio-1468898

ABSTRACT

Oral squamous cell carcinoma (OSCC) is a malignant tumour of Head and Neck Cancer (HNC). The recent therapeutic approaches used to treat cancer have adverse side effects. The natural agents exhibiting anticancer activities are generally considered to have a robust therapeutic potential. Curcuminoids, one of the major active compounds of the turmeric herb, are used as a therapeutic agent for several diseases including cancer. In this study, the cytotoxicity of curcuminoids was investigated against OSCC cell line HNO97. Our data showed that curcuminoids significantly inhibits the proliferation of HNO97 in a time and dose-dependent manner (IC50=35 μM). Cell cycle analysis demonstrated that curcuminoids increased the percentage of G2/M phase cell populations in the treated groups. Treating HNO97 cells with curcuminoids led to cell shrinking and increased detached cells, which are the typical appearance of apoptotic cells. Moreover, flow cytometry analysis revealed that curcuminoids significantly induced apoptosis in a time-dependent manner. Furthermore, as a response to curcuminoids treatment, comet tails were formed in cell nuclei due to the induction of DNA damage. Curcuminoids treatment reduced the colony formation capacity of HNO97 cells and induced morphological changes. Overall, these findings demonstrate that curcuminoids can in vitro inhibit HNC proliferation and metastasis and induce apoptosis.


O carcinoma de células escamosas oral (OSCC) é um tumor maligno do câncer de cabeça e pescoço (HNC). As recentes abordagens terapêuticas usadas para tratar o câncer têm efeitos colaterais adversos. Os agentes naturais que exibem atividades anticâncer são geralmente considerados como tendo um potencial terapêutico robusto. Curcuminoides, um dos principais compostos ativos da erva cúrcuma, são usados como agente terapêutico para várias doenças, incluindo câncer. Neste estudo, a citotoxicidade dos curcuminoides foi investigada contra a linha de células OSCC HNO97. Nossos dados mostraram que os curcuminoides inibem significativamente a proliferação de HNO97 de forma dependente do tempo e da dose (IC50 = 35 μM). A análise do ciclo celular demonstrou que os curcuminoides aumentaram a porcentagem de populações de células da fase G2 / M nos grupos tratados. O tratamento das células HNO97 com curcuminoides levou ao encolhimento celular e ao aumento das células destacadas, que são a aparência típica das células apoptóticas. Além disso, a análise de citometria de fluxo revelou que os curcuminoides induziram significativamente a apoptose de uma maneira dependente do tempo. Além disso, em resposta ao tratamento com curcuminoides, caudas de cometa foram formadas nos núcleos das células devido à indução de danos ao DNA. O tratamento com curcuminoides reduziu a capacidade de formação de colônias das células HNO97 e induziu alterações morfológicas. No geral, esses achados demonstram que os curcuminoides podem inibir in vitro a proliferação e metástase de HNC e induzir apoptose.


Subject(s)
Humans , Apoptosis/drug effects , Squamous Cell Carcinoma of Head and Neck/drug therapy , Curcuma/cytology , Curcuma/toxicity , Head and Neck Neoplasms/prevention & control
20.
Braz. j. biol ; 832023.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469114

ABSTRACT

Abstract Oral squamous cell carcinoma (OSCC) is a malignant tumour of Head and Neck Cancer (HNC). The recent therapeutic approaches used to treat cancer have adverse side effects. The natural agents exhibiting anticancer activities are generally considered to have a robust therapeutic potential. Curcuminoids, one of the major active compounds of the turmeric herb, are used as a therapeutic agent for several diseases including cancer. In this study, the cytotoxicity of curcuminoids was investigated against OSCC cell line HNO97. Our data showed that curcuminoids significantly inhibits the proliferation of HNO97 in a time and dose-dependent manner (IC50=35 M). Cell cycle analysis demonstrated that curcuminoids increased the percentage of G2/M phase cell populations in the treated groups. Treating HNO97 cells with curcuminoids led to cell shrinking and increased detached cells, which are the typical appearance of apoptotic cells. Moreover, flow cytometry analysis revealed that curcuminoids significantly induced apoptosis in a time-dependent manner. Furthermore, as a response to curcuminoids treatment, comet tails were formed in cell nuclei due to the induction of DNA damage. Curcuminoids treatment reduced the colony formation capacity of HNO97 cells and induced morphological changes. Overall, these findings demonstrate that curcuminoids can in vitro inhibit HNC proliferation and metastasis and induce apoptosis.


Resumo O carcinoma de células escamosas oral (OSCC) é um tumor maligno do câncer de cabeça e pescoço (HNC). As recentes abordagens terapêuticas usadas para tratar o câncer têm efeitos colaterais adversos. Os agentes naturais que exibem atividades anticâncer são geralmente considerados como tendo um potencial terapêutico robusto. Curcuminoides, um dos principais compostos ativos da erva cúrcuma, são usados como agente terapêutico para várias doenças, incluindo câncer. Neste estudo, a citotoxicidade dos curcuminoides foi investigada contra a linha de células OSCC HNO97. Nossos dados mostraram que os curcuminoides inibem significativamente a proliferação de HNO97 de forma dependente do tempo e da dose (IC50 = 35 M). A análise do ciclo celular demonstrou que os curcuminoides aumentaram a porcentagem de populações de células da fase G2 / M nos grupos tratados. O tratamento das células HNO97 com curcuminoides levou ao encolhimento celular e ao aumento das células destacadas, que são a aparência típica das células apoptóticas. Além disso, a análise de citometria de fluxo revelou que os curcuminoides induziram significativamente a apoptose de uma maneira dependente do tempo. Além disso, em resposta ao tratamento com curcuminoides, caudas de cometa foram formadas nos núcleos das células devido à indução de danos ao DNA. O tratamento com curcuminoides reduziu a capacidade de formação de colônias das células HNO97 e induziu alterações morfológicas. No geral, esses achados demonstram que os curcuminoides podem inibir in vitro a proliferação e metástase de HNC e induzir apoptose.

SELECTION OF CITATIONS
SEARCH DETAIL